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LAJtGE DEFLECTIONS OF DIAMOND-SHAPED FRAMES·

J, A. JENKINSt, T. B. SEITZt and J. S. PRZEMIENIECKI

Air Force Institute of Technology
Wright-Patterson Air Force Base, Ohio

Abstract-The nonlinear solutions for the large deflections of diamond-shaped frames are derived. The frames
are loaded by forces applied at a pair of opposite joints, which are either pin-jointed or rigid. The experimental
results obtllined on square steel frames are compared with the nonlinear (exact) solutions and also with small
deflection nonlinear and linear analyses. Stability of such frames under compressive loading is discussed and
interpreted by both small and large deflection theories. The exact solutions are based on the assumption that
the material is perfectly elastic and that the shear deformations are negligible. The deficiencies of the small
deflection theories are made clear in this investigation.
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Young's modulus
complete elliptic integrals of the second kind
incomplete elliptic integrals of the second kind
incomplete elliptic integrals of the first kind
complete elliptic integrals of the first kind
second moment of area
variable defined by equation (10)
variable defined by equation (25)
member length
bending moment
bending moment at the rigid end of member in pinned-fixed frame for tensile and compressive
loading, respectively.
distance along the axis of member
joint deflection relative to the rigid end in the direction normal to the tensile and compressive
loads, respectively; positive directions defined in Fig. 1
joint deflection relative to the rigid end in the direction of Wand W, respectively
tensile and compressive loading on frame, respectively
normal deflection of member (small deflection theory)
Cartesian coordinates
WF/EI, tensile load parameter
W/2/EI, compressive load parameter
angles defined by equations (9) and (24)
angle between the tangent to the deflected number at a point and the x axis
angle at the rigid joint
angle at the pinned joint

INTRODUCTION

NUMERICAL methods using finite element idealization are being currently developed for
the nonlinear analysis of structures made up from beams with either pin-jointed or rigid

* This paper is based on a thesis by the first two authors submitted in partial fulfillment of the requirement
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connections. In order to cneck accuracy of these methods exact solutions are required for
large deflections and the analysis of diamond-shaped frames ,has been selected for this
purpose.

Studies of large deflections, which require nonlinear solutions, have been concerned
mainly with single members. Large deflections in cantilever beams subjected to con
centrated and uniformly distributed loads were studied by Barten [1], Bisshopp and
Drucker [2], Rohde [3], and Scott and Carver [4]. Simply supported beams were analyzed
by Conway [5], Scott and Carver [4], and Gospodnetic [6], while Wang et al. [7] developed
numerical analysis for beams carrying arbitrary loading. Recently Kerr [8] developed an
exact analysis for large deflections in a square frame with rigid corners loaded at the mid
points of a pair of opposite sides. The structure analyzed in this paper is a diamond
shaped frame subjected to either tensile or compressive loading applied at a pair of oppo
site joints. The loaded joints can be either pinned or rigid.

The analysis of the frame deflections presented in this paper may be regarded as an
extension of the beam-column solution to large deflections. The method of solution used
is similar to that of the elastica discussed by Timoshenko and Gere [9]. The solution for
deflections is obtained in terms of elliptic integrals and a computer program has been
written to compute not only deflections of the joints but also the deformed shapes of the
frame. Experimental data obtained on square frames agreed very closely with the large
deflection theoretical results. In addition, small deflection nonlinear and linear analyses
were used for comparison with the experimental data.

LARGE DEFLECTION ANALYSIS: PINNED-FIXED FRAME

~a) Tensile loading

The frame geometry and loading are shown in Fig. l(a}. Because of symmetry of the
frame it is sufficient to analyze only one frame member. The equilibrium equations for
large deflections must be based on the deformed configuration as shown in Fig. 1 so
that the Euler-Bernoulli equation for bending due to tensile loading must be expressed as

d¢ M W
- = - = -(lcos¢o-u-x).
ds EI EI

(1)

Differentiating equation (I) with respect to s and introducing a nondimensional load
parameter 1]2 = WI 21EI we obtain

(2)

Integrating equation (2)

where the constant C may be determined from the boundary condition

d¢ = 0 F1.. F1..at 'f' = 'f'l'
ds

(3)

(4)
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FIG. I. Pinned-fixed frame: (al undeformed frame, (bl large deflections in tension, (cl large deflections
in compression.

Hence

(5)

Now for small values of s the value of d<Pjds is positive and sin ¢l > sin ¢; consequently,
the positive sign must be taken in the ambiguity on the left of equation (5).

Observing that

dcj> = d¢ dy = d¢ sin ¢
ds dy ds dy

the projection of the deformed member on the y axis may be calculated from

J
I sin cPo + v

lsin¢o+v = dy
o

(6)

(7)
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Using equations (5), (6) and (7) we have

f. v ) f4>1 sin 4> d4>
11 \sm 4>0 +1 = 4>0 J[2(sin 4>1- sin 4»f

Introducing now a new variable 0 such that

sinzO = (1 + sin 4»/2kz

where

2P = 1+sin 4>1

equation (8) may be transformed into

where

and

(8)

(9)

(10)

(11)

(12)

(13)

The integral on the right of equation (11) is expressible in terms of elliptic integrals and
it can be shown that

11 (sin4>o+j) = K(k)-F(0.,k)-2E(k)+2E(0t>k) (14)

where K(k) and F(() b k) are, respectively, complete and incomplete elliptic integrals of the
first kind with modulus k, while E(k) and E(OI' k) are, respectively, complete and incom
plete elliptic integrals of the second kind.

Similarly to develop an expression for the projection of the deformed member on the
x axis we use

d4> = d4> dx = d4> cos 4>
ds dx ds dx

and

J
1COS4>0-U

1cos 4>0 - u = 0 dx.

From equations (15) and (16) it follows that

11 (cos 4>0 - '!..) =f4>1 J ~os 4> d4> .
I 4>0 [2(sm 4>1- sin 4»]

Using again the variable 9, defined by equation (5), we obtain from equation (17)

11 (cos 4>0 -7) = J:~ 2k sin 0 d9 = 2k cos 91,

(15)

(16)

(17)

(18)
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In equations (14) and (18) 4J1 appears as an unknown angle and thus an additional
relationship is required in order to solve for the deflections u and v. This relationship is
obtained from the condition of inextensibility of the member, i.e.

rI IJ"" d4J
1=Jo ds = ~ "'0 .j[2(sin 4J1-sin 4J))

which may be transformed, using equations (9), (10), (12) and (13), into

(19)

(20)J
82 dO

17 = 8

1

.j[1---"-k-;:;-2s--'--in--;:-20--"-] = K(k)~F(Ohk).

The derivation of equations for the deflected' shape of the member is similar to that for
the deflection of the end points of the member, except that the integrations involved must
be carried out over the interval 4Jo to 4J instead of 4Jo to 4J1' Replacing O2by 0 in equations
(11) and (18) and noting that the projected lengths are simply y and x, respectively, we
obtain

and

17y/1 = F(O, k)-F(Oh k)-2E(0, k)+2E(Ob k)

17x/1 = 2k(cos 01 -cos 0).

(21)

(22)

Solutions to equations (20), (21) and (22) have been obtained on an IBM 7094 computer
using subroutines for elliptic integrals. Some deformed shapes for a square frame are
shown in Fig. 2 for several values of the loading parameter 172

•

(b) Compressive loading

The basic equation for bending of the member under compressive loading, as shown
in Fig. l(c~ is given by

d4J W _
ds = - E/I cos 4Jo+u-x). (23)

Following a procedure analogous to that for the case of tensile loading and employing a
new variable lJ such that

sin2 lJ = (1- sin 4J)/2P

where

2P = i-sin 4J1

we obtain the following equations:

~(sin tPo-~) = K(1<)-F(lJ b 1<)-2E(1<)+2E(lJb 1<)

ii(cOS 4Jo+~) = - 21< cos lJ 1

r; = F(lJb 1<)-K(1<)

(24)

(25)

(26)

(27)

(28)
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ifyll = F(lJ, k)-F(lJJ, k)-2E(lJ, k)+2E(lJJ, k)

ifxll = 2k(COS lJ-cos lJ 1)

if2 = WIIEI.

(29)

(30)

(31 )

(32)

It should be noted from the sign convention used in Fig. 1 that if2 = _1J2 and that the
positive signs of uand vare opposite to those of u and v.

Typical deformed shapes for a square frame are shown in Fig. 2 for 1J2 = - 1 and - 12.
Variation of the elongation or contraction of the frame diagonals with the applied
loading is plotted in Figs. 3 and 4. These plots and the deformed frame shapes have been
obtained from the computer solutions of the equations for the joint deflections and the
x and y coordinates. The asymptotic values of deflections shown in Figs. 3 and 4 may be
predicted from the frame geometry. When the applied compressive loading is sufficiently
high the opposite members of the frame will theoretically pass through each other as
shown by the deformed shape for 1J2 = - 12 in Fig. 2. This is also accompanied by the
reversal of slope of the load~horizontal elongation curve as illustrated in Fig. 4.

FIG. 2. Deformed shapes ofa square pinned-fixed frame for different values of the loading parameter 1]2
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FIG. 3. Vertical elongation (or contraction) of a square pinned-fixed frame.

LARGE DEFLECTION ANALYSIS: FIXED-FIXED FRAME

The frame geometry is shown in Figs. 5(a) and 5(b). Because of symmetry of the frame,
points of inflection on each member are located midway between its ends. Since at the
point of inflection the bending moment is zero it follows that the solution for deflections
of the fixed-fixed frame can be derived from the previous solution for the pinned-fixed
frame.

Typical deformed shapes for a square, fixed-fixed frame are shown in Fig. 6 for several
different values of the loading parameter 1'/2.

SMALL DEFLECTION ANALYSIS

(a) Pinned-jixed frame
For small deflections d¢/ds ~ d2w/ds2 where w is the deflection normal to the frame

member. The Euler-Bernoulli equation for the deflection w can be solved explicitly and
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FIG. 4. Horizontal contraction (or elongation) of a square pinned-fixed frame.

(33)

(34)

then noting that the tangential deflection (along the member) must be equal to zero we
can resolve w into u and v components. Subsequent analysis will be restricted to square
frames which will be used for comparison with the exact theory. It can be demonstrated
easily that for a square frame under tensile loading the joint deflections are given by

7 7= ;t [1- ~t tanh(11/2t)].

Similarly for compressive loading

U v 1[ 2t ~- = - = - 1-- tan(qj2t)1 1 2t q .

For infinitesimal deflections (linear theory) the right sides of equations (33) and (34)
reduce to W12/6El and W12 /6El, respectively.
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FIG. 5. Fixed-fixed frame.

FIG. 6. Deformed shapes of a square fixed-fixed frame for different values of the loading parameter 1]2.

(b) Fixed-fixedframe

For a square fixed-fixed frame under tensile loading

u v 1 ~ 2
i

'~- = - = - 1-- tanh('7/2-)
I 1 2t '7

(35)



600 .I. A. JENKINS. T. B. SEITZ and .I. S. PRZEMIENIECKI

(36)

while for compressive loading

~ = ~ = ~ ~ _ 2
i
tan(iiI2i~

I I 2+ L ii ~'

For infinitesimal deflections (linear theory) the right sides of equations (35) and (36)
become W12/24E1 and wF124E1, respectively.
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FIG. 9. Vertical elongation of pinned-fixed frame under tensile loading.

(c) Stability

The deflections predicted by the small deflection theory tend to infinity when the
Euler buckling load is reached in the frame members. Perusal of equations (34) and (36)
indicates that this occurs when (iiI2t ) = nl2 for pinned-fixed frame and when (iiI2 i ) = nl2
for fixed-fixed frame. The exact theory, on the other hand, predicts a stable system, i.e.
one in which deflections in the direction of the applied load are always increasing. This
is demonstrated for the case of pinned-fixed frames in Fig. 3.



FIG. 7. Pinned-fixed frame loaded in tension.

FIG. 8. Pinned-fixed frame loaded in compression.

[facing page 600
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EXPERIMENTAL RESULTS AND CONCLUSIONS

601

Deflections predicted by the large deflection theory have been verified experimentally
on square frames made from 4130 cold-rolled steel strip having E = 28·95 x 106 lbjin2

.

Each member was 17 in. long of cross-section 1·0 x 0·0625 in. All fixed joints were con
structed by welding the connecting members together over a special jig. The pinned
joints were constructed by welding I-in. steel hinges to the pinned members.
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FIG. 10. Horizontal contraction of pinned-fixed frame under tensile loading.

The experimental set-up is shown in Figs. 7 and 8. Loading was applied by hanging
dead weights from a system of cables attached to the frame. Deflections were read directly
off a sheet of standard grid paper underneath a layer'of plate glass over which the frames
were positioned.

A comparison of the results of the various theories as well as an indication of the
accuracy of the theoretical predictions of the large 'deflection analysis may be seen in
Figs. 9, 10, 11 and 12. The large deflection theory gives results which are in excellent
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FIG. II. Vertical contraction of pinned-fixed frame under compressive loading.
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FIG. 12. Horizontal elongation of pinned-fixed frame under compressive loading.
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agreement with the experimental measurements of deflections. It can be seen that for the
range of deflections considered the small deflection nonlinear and linear analyses are
unsatisfactory for predicting frame deflections and the large deflection analysis must be
used.
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Resume-Les solutions non-lineaires pour les grandes deviations de cadre losangique sont derivees. Les cadres
sont charges de forces appliquees sur une paire de joints opposes, qui sont soit assembles par des boulons, soit
rigides. Lesresultats experimentaux obtenus sur des cadres d'acier carres sbnt compares avec la solution non
lineaire (exacte) ainsi qu'avec des analyses de legere deviation non-lineaire et lineaire. La stabilite de ces cadres
sous des charges compressives est discutee et interpretee par des theories de grande et petite deviation. Les
solutions exactes sont basees sur l'assomption que Ie materiel est de preference elastique et que les deformations
de cisaillement sont negligeables. Les deficiences des theories de petites deviations sont c1airement demontrees
dans cette investigation.

Zusammenfassung-Die nichtlinearen Losungen flir die grossen Abweichungen von rautenfOrmigen Rahmen
sind abgeleitet. Die Rahmen sind von Kraften beansprucht welche in einem Paar von gegeniiberliegenden
Verbindungen angebracht sind, welche entweder bolzenverbunden oder starr sind. Die Versuchsergebnisse,
erhalten an viereckigen Stahlgestellen, sind mit den nichtlinearen (exakten) Losungen und auch mit kleinen
Abweichungen von nichtlinearen und linearen Analysen verglichen. Die Stabilitat von solchen Rahmen unter
Durchbeladung ist erortert und erklart mit den beiden kleinen und grossen Abweichungstheorien. Die exakten
Losungen sind auf der Annahme begriindet, dass das Material vollkommen e1astisch ist und dass die Scherver
formungen geringfligig sind. Die Unzulanglichkeiten der kleinen Abweichungstheorien sind in dieser Unter
suchung klargestellt.

A6CTpaKT-BbIBeAellbl HeJIHHeliHble peweHHlI AJIlI 60JIbWHX OTKJIOHeHHli pOM6oBHAHblX cjlepM. ¢epMbl

HarpYlKeHbI CHJIaMH, npHJIOlKeHHblMH y napbI npOTHBOnOJIOlKHbIX coeAHHeHHA, KOTopbIe npeACTaBJIlIIOT H3

ce611 HJIH wapHHpHble HJIH lKecTKHe coeAHHeHHlI. 3KcnepHMeHTaJIbHble pe3YJIbTaTbI, nOJIy'leHHbIe Ha

KBaApaTHblX CTaJIbHblX cjlepMax CpaBHHBaIOTClI c HeJIHHeAHbIMH (TO'lHbIMH) peweHHlIMH H TaKlKe c HeJIH

HeliHbIMH H JIHHeliHblMH aHaJIH33MH MaJIOrO OTKJIOHeHHlI. YCToA'IHBOCTb TaKHX cjlepM nOA ClKHMaIOweA

HarpY3KoA 06cylKAaeTcll H 06hllcHlIeTcll 06eHMH TeopHlIMH-TeopHeA MaJIOrO OTKJIOHeHHlI H TeopHeA

60JIbWOro OTICJIOHeHHlI. TO'lHble peweHHlI OCHOBaHbI Ha npeAnOJIOlKeHHH, 'ITO MTaepHaJI COBepWeHHO

ynpyr H, 'ITO ,QeljlopMaUHH cABHra-He3Ha'lHTeJIbHbl. B :nOM HCCJIe,QOBllHHH BbIlICHlIIOTCll He,QOCTaTKH

TeopHil MaJIOrO OTKJIOHeHHlI. •


