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LARGE DEFLECTIONS OF DIAMOND-SHAPED FRAMES*

J. A. Jenkinst, T. B. SErrz] and J. S. PRZEMIENIECKI

Air Force Institute of Technology
Wright-Patterson Air Force Base, Ohio

Abstract—The nonlinear solutions for the large deflections of diamond-shaped frames are derived. The frames
are loaded by forces applied at a pair of opposite joints, which are either pin-jointed or rigid. The experimental
results obtained on square steel frames are compared with the nonlinear (exact) solutions and also with small
deflection nonlinear and linear analyses. Stability of such frames under compressive loading is discussed and
interpreted by both small and large deflection theories. The exact solutions are based on the assumption that
the material is perfectly elastic and that the shear deformations are negligible. The deficiencies of the small
deflection theories are made clear in this investigation.
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Young’s modulus

complete elliptic integrals of the second kind

incomplete elliptic integrals of the second kind

incomplete elliptic integrals of the first kind

complete elliptic integrals of the first kind

second moment of area

variable defined by equation (10)

variable defined by equation (25)

member length

bending moment

bending moment at the rigid end of member in pinned-fixed frame for tensile and compressive
loading, respectively.

distance along the axis of member

joint deflection relative to the rigid end in the direction normal to the tensile and compressive
loads, respectively; positive directions defined in Fig. 1

joint deflection relative to the rigid end in the direction of W and W, respectively
tensile and compressive loading on frame, respectively

normal deflection of member (small deflection theory)

Cartesian coordinates

WI?/EI, tensile load parameter

WI*/EI, compressive load parameter

angles defined by equations (9) and (24)

angle between the tangent to the deflected number at a point and the x axis
angle at the rigid joint

angle at the pinned joint

INTRODUCTION

NUMERICAL methods using finite element idealization are being currently developed for
the nonlinear analysis of structures made up from beams with either pin-jointed or rigid

* This paper is based on a thesis by the first two authors submitted in partial fulfiliment of the requirement
for the degree of Master of Science at the Air Force Institute of Technology.

t Now with: Air Force Systems Command, L.G. Hanscom Field, Massachusetts.

1 Now with: Air Force Systems Command, Vandenberg AFB, California.

591



592 J. A. JENKINS, T. B. Seitz and J. S. PRZEMIENIECK1

connections. In order to check accuracy of these methods exact solutions are required for
large deflections and the analysis of diamond-shaped frames-has been selected for this
purpose. :

Studies of large deflections, which require nonlinear solutions, have been concerned
mainly with single members. Large deflections in cantilever beams subjected to con-
centrated and uniformly distributed loads were studied by Barten [1], Bisshopp and
Drucker [2], Rohde [3), and Scott and Carver [4]. Simply supported beams were analyzed
by Conway [ 5], Scott and Carver [4], and Gospodnetic [6], while Wang et al. [7] developed
numerical analysis for beams carrying arbitrary loading. Recently Kerr [8] developed an
exact analysis for large deflections in a square frame with rigid corners loaded at the mid-
points of a pair of opposite sides. The structure analyzed in this paper is a diamond-
shaped frame subjected to either tensile or compressive loading applied at a pair of oppo-
site joints. The loaded joints can be either pinned or rigid.

The analysis of the frame deflections presented in this paper may be regarded as an
extension of the beam-column solution to large deflections. The method of solution used
is similar to that of the elastica discussed by Timoshenko and Gere [9]. The solution for
deflections is obtained in terms of elliptic integrals and a computer program has been
written to compute not only deflections of the joints but also the deformed shapes of the
frame. Experimental data obtained on square frames agreed very closely with the large
deflection theoretical results. In addition, small deflection nonlinear and linear analyses
were used for comparison with the experimental data.

LARGE DEFLECTION ANALYSIS: PINNED-FIXED FRAME

{a) Tensile loading
The frame geometry and loading are shown in Fig. 1(a). Because of symmetry of the
frame it is sufficient to analyze only one frame member. The equilibrium equations for
large deflections must be based on the deformed configuration as shown in Fig. | so
that the Euler-Bernoulli equation for bending due to tensile loading must be expressed as
dp M W
—&S—=E=E(lcosd)0—u—x). {1)
Differentiating equation (1) with respect to s and introducing a nondimensional load
parameter n* = WI%/EI we obtain

d? Wdx —n?
4 = Tgcos ¢. (2)

ds? ~ " Elds

Integrating equation (2)

2 2 2
(‘—:3) - —lizsin $+C (3)

where the constant C may be determined from the boundary condition

Wo0 at p=¢ @
ds
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FI1G. 1. Pinned-fixed frame: (a) undeformed frame, (b) large deflections in tension, (c) large deflections
in compression.

Hence

dé 1 : :
t = ++/[2(sin ¢, —sin §)). &)
s 1
Now for small values of s the value of d¢/ds is positive and sin ¢, > sin ¢ ; consequently,
the positive sign must be taken in the ambiguity on the left of equation (5).

Observing that

dp _dpdy do
E—Ed—s—d—ysln(b (6)

the projection of the deformed member on the y axis may be calculated from

~s‘lsind:oJru

Isingy+v = dy (7
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Using equations (5), (6) and (7) we have

. o .
”(Si“ ¢°+§)= %\/{2(;:;? = ®
Introducing now a new variable # such that
sin?0 = (1 +sin ¢)/2k> 9)
where
2k? = 1 +sin ¢, (10)
equation (8) may be transformed into
8 .
" (Si" bo +l?)) = L \(/2-[,;2_%23;3} a0 (1
where
sin?0; = (1 +sin ¢o)/(1 +sin ¢,) (12)
and
8, = nf2. {13)

The integral on the right of equation (11) is expressible in terms of elliptic integrals and
it can be shown that

n (sin ¢o+f;~) = K(k)—F(0,, k)— 2E(k) + 2E(8,, k) (14)

where K(k) and F(8,, k) are, respectively, complete and incomplete elliptic integrals of the
first kind with modulus &, while E(k) and E(0,, k) are, respectively, complete and incom-
plete elliptic integrals of the second kind.

Similarly to develop an expression for the projection of the deformed member on the

X axis we use

d$ d¢ dx _dé
s " dx a5 axot? {15
and
icosgo—u
1cos po—u =j8 T 4k (16)

From equations (15) and (16) it foliows that

u\ 4 cos ¢ d¢
n (Cos bo —7) _.[ 40 V/[2sin ¢;—sin §)] o

Using again the variable 8, defined by equation (5), we obtain from equation (17)

a2
n(cos ¢0~.%) :J 2k sin § d6 = 2k cos 6. (18)

0
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In equations (14) and (18) ¢, appears as an unknown angle and thus an additional
relationship is required in order to solve for the deflections u and v. This relationship is
obtained from the condition of inextensibility of the member, i.e.

: 1 d¢
= =— 19
: j % 'J 5, J[2sin ¢, —sin §)] 1

which may be transformed, using equations (9), (10), (12) and. (13), into

b2 do
n =j NIEET K(k)—F(6,, k). (20)
0

The derivation of equations for the deflected shape of the member is similar to that for
the deflection of the end points of the member, except that the integrations involved must
be carried out over the interval ¢, to ¢ instead of ¢, to ¢,. Replacing 6, by 8 in equations
(11) and (18) and noting that the projected lengths are simply y and x, respectively, we
obtain

ny/l = F(6, k)—F(0,, k)—2E(6, k)+ 2E(8,, k) 21
and
nx/l = 2k(cos 6, —cos 6). (22)

Solutions to equations (20), (21) and (22) have been obtained on an IBM 7094 computer
using subroutines for elliptic integrals. Some deformed shapes for a square frame are
shown in Fig. 2 for several values of the loading parameter n>.

(b) Compressive loading
The basic equation for bending of the member under compressive loading, as shown
in Fig. 1(c), is given by

dé
ds

Following a procedure analogous to that for the case of tensile loading and employing a
new variable 8 such that

w
= _E(I oS o + i —X). (23)

sin28 = (1 —sin ¢)/2k? (24)
where
2k? = 1—sin ¢, (25)

we obtain the following equations:

f (Sin o _ﬁl) = K(k)—F(8,, k)—2E(k) +2E(@,, k) (26)

ﬁ(cos ¢o+%)= —2kcos 8, X))
n

= F(@,, k)— K(k) (28)
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fiy/l = F@,k)—F(@,, k)—2E@®, k)+2E@8,, k) 29)
f1x/l = 2k(cos 6 —cos 0,) (30)
where
sin?0, = (1 —sin ¢,)/(1 —sin ¢;) (31)
and
72 = WIEL (32)
It should be noted from the sign convention used in Fig. 1 that #* = —»” and that the
positive signs of &z and ¥ are opposite to those of u and v.
Typical deformed shapes for a square frame are shown in Fig. 2 for n> = —1 and —12.

Variation of the elongation or contraction of the frame diagonals with the applied
loading is plotted in Figs. 3 and 4. These plots and the deformed frame shapes have been
obtained from the computer solutions of the equations for the joint deflections and the
x and y coordinates. The asymptotic values of deflections shown in Figs. 3 and 4 may be
predicted from the frame geometry. When the applied compressive loading is sufficiently
high the opposite members of the frame will theoretically pass through each other as
shown by the deformed shape for 42 = —12 in Fig. 2. This is also accompanied by the
reversal of slope of the load-horizontal elongation curve as illustrated in Fig. 4.

1’2=—| 1’2=_|2

F1G. 2. Deformed shapes of a square pinned-fixed frame for different values of the loading parameter 52
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FIG. 3. Vertical elongation (or contraction) of a square pinned-fixed frame.

LARGE DEFLECTION ANALYSIS: FIXED-FIXED FRAME

The frame geometry is shown in Figs. 5(a) and 5(b). Because of symmetry of the frame,
points of inflection on each member are located midway between its ends. Since at the
point of inflection the bending moment is zero it follows that the solution for deflections
of the fixed-fixed frame can be derived from the previous solution for the pinned-fixed
frame.

Typical deformed shapes for a square, fixed-fixed frame are shown in Fig. 6 for several
different values of the loading parameter #>.

SMALL DEFLECTION ANALYSIS

(a) Pinned-fixed frame
For small deflections d¢/ds ~ d?w/ds? where w is the deflection normal to the frame
member. The Euler-Bernoulli equation for the deflection w can be solved explicitly and
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F16. 4. Horizontal contraction (or elongation} of a square pinned-fixed frame.

then noting that the tangential deflection (along the member) must be equal to zero we
can resolve w into u and v components. Subsequent analysis will be restricted to square
frames which will be used for comparison with the exact theory. It can be demonstrated
easily that for a square frame under tensile loading the joint deflections are given by

w v 1 2t
— T e DD e— s *
1 =7= % [1 ; tanh(y/2 )] (33)
Similarly for compressive loading
a b 1 2%
o~ = — | 1 =2 tan(fA/2}
T =72 [I 7 tan(n/2 ﬂ . (34)

For infinitesimal deflections (linear theory) the right sides of equations (33) and (34)
reduce to WI?/6EI and WI?/6EI, respectively.



Large deflections of diamond-shaped Trames 599

fzw ‘aw

FIG. 5. Fixed-fixed frame.
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FiG. 6. Deformed shapes of a square fixed-fixed frame for different values of the loading parameter 2.

(b) Fixed-fixed frame
For a square fixed-fixed frame under tensile loading
u v 1 23 ,
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while for compressive loading

a v 1 2

- = - = |[1—"-tan(#/2%].

= 2%[ - tan(i/ )] (36)
For infinitesimal deflections (linear theory) the right sides of equations (35) and (36)
become WI?/24EI and WI?/24EI, respectively.
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F1G. 9. Vertical elongation of pinned-fixed frame under tensile loading.

(¢) Stability

The deflections predicted by the small deflection theory tend to infinity when the
Euler buckling load is reached in the frame members. Perusal of equations (34) and (36)
indicates that this occurs when (77/2%) = n/2 for pinned-fixed frame and when (7/2%) = /2
for fixed-fixed frame. The exact theory, on the other hand, predicts a stable system, i.e.
one in which deflections in the direction of the applied load are always increasing. This
is demonstrated for the case of pinned-fixed frames in Fig. 3.



F1G. 7. Pinned-fixed frame loaded in tension.

Fi1G. 8. Pinned-fixed frame loaded in compression.

[facing page 600
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EXPERIMENTAL RESULTS AND CONCLUSIONS

Deflections predicted by the large deflection theory have been verified experimentally
on square frames made from 4130 cold-rolled steel strip having E = 2895 x 10 Ib/in®.
Each member was 17 in. long of cross-section 1:0 x 0-0625 in. All fixed joints were con-
structed by welding the connecting members together over a special jig. The pinned
joints were constructed by welding 1-in. steel hinges to the pinned members.
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FiG. 10. Horizontal contraction of pinned-fixed frame under tensile loading.

The experimental set-up is shown in Figs. 7 and 8. Loading was applied by hanging
dead weights from a system of cables attached to the frame. Deflections were read directly
off a sheet of standard grid paper underneath a layer of plate glass over which the frames
were positioned.

A comparison of the results of the various theories as well as an indication of the
accuracy of the theoretical predictions of the large deflection analysis may be seen in
Figs. 9, 10, 11 and 12. The large deflection theory gives results which are in excellent
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F1G. 11. Vertical contraction of pinned-fixed frame under compressive loading.
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F1G. 12. Horizontal elongation of pinned-fixed frame under compressive loading.
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agreement with the experimental measurements of deflections. It can be seen that for the
range of deflections considered the small deflection nonlinear and linear analyses are
unsatisfactory for predicting frame deflections and the large deflection analysis must be
used.
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Résumé—Les solutions non-linéaires pour les grandes déviations de cadre losangique sont dérivées. Les cadres
sont chargés de forces appliquées sur une paire de joints opposés, qui sont soit assemblés par des boulons, soit
rigides. Les résultats expérimentaux obtenus sur des cadres d’acier carrés sont comparés avec la solution non-
linéaire (exacte) ainsi qu’avec des analyses de légére déviation non-linéaire et linéaire. La stabilité de ces cadres
sous des charges compressives est discutée et interprétée par des théories de grande et petite déviation. Les
solutions exactes sont basées sur I’assomption que le materiel est de préférence élastique et que les déformations
de cisaillement sont négligeables. Les déficiences des théories de petites déviations sont clairement démontrées
dans cette investigation.

Zusammenfassung—Die nichtlinearen Losungen fiir die grossen Abweichungen von rautenférmigen Rahmen
sind abgeleitet. Die Rahmen sind von Kriften beansprucht welche in eihem Paar von gegeniiberliegenden
Verbindungen angebracht sind, welche entweder bolzenverbunden oder starr sind. Die Versuchsergebnisse,
erhalten an viereckigen Stahlgestellen, sind mit den nichtlinearen (exakten) Losungen und auch mit kleinen
Abweichungen von nichtlinearen und linearen Analysen verglichen. Die Stabilitit von solchen Rahmen unter
Durchbeladung ist erdrtert und erklirt mit den beiden kleinen und grossen Abweichungstheorien. Die exakten
Lésungen sind auf der Annahme begriindet, dass das Material vollkommen elastisch ist und dass die Scherver-
formungen geringfiigig sind. Die Unzulinglichkeiten der kleinen Abweichungstheorien sind in dieser Unter-
suchung klargestellt.

AGcTpakT—BbiBeneHbl HennHelHbIe pewleHus AN 60JbLIMX OTKIIOHEHHA pomOoBHAHBIX depm. Pepmbi
HArpyXeHbl CHIaMH, TIPHIIOKEHHBIMH Y MAPLI MPOTHBOMONOXHLIX COSAHHEHMI, KOTOPHIE IPEACTABIAIOT K3
ceb MM WAPDHAPHBIE MM XECTKHE COCAMHEHHA. OKCNEPHMEHTAJIbHBIE Ppe3yNbTaThi, NONYYEHHLIE Ha
KBaJpaTHbIX CTANBHBIX (epMax CPaBHUBAIOTCA C HEJIMHEHHBIMU (TOMHBIMH) PELIEHMAMH H TAKXE C HeJlu-
HeHHBLIMU M MHeHHBIMH aHAJIM3aMH MaJOro OTKIOHEHHA. YCTORMYMBOCTBL Takux Q¢PM Mol CKHUMatouleH
Harpy3ko#t obcyxnaerca v obbsicHsercsi 06eMMH TEOPHAMH——TeopHed Manoro OTKJIOHEHHS M TeopHel
Gonbiuoro orxyioHeHHs. TOuYHbIE pelIeHHsi OCHOBaHbl Ha MPEANOJIOKEHHH, YTO MTAEPHANI COBEPLUCHHO
YNpYT W, 4TO AePOPMaLMH CABHTA-—HE3HAYMTENbHBI. B 3TOM HCCAENOBAHMH BBIRCHAIOTCA HEAOCTATKH,
TEOPUH MANOro OTKJIIOHEHUS.



